Vittorio Peano


Vittorio earned his Master in physics at the Università degli Studi di Milano (Milan, Italy) and his PhD also in physics at the Heinrich-Heine-Universität (Düsseldorf, Germany). He has an extensive international experience including postdoctoral stints at the Freiburg Institute for Advanced Studies (Freiburg, Germany), Michigan State University (East Lansing, USA), and the Friedrich-Alexander-Universität (Erlangen, Germany). In his research, he likes to combine ideas and techniques from the realms of quantum optics and condensed matter physics. He joined the University of Malta as a lecturer in 2016 where he joined forces with André Xuereb to start a common Quantum Optics group.

Contact details


  1. Vittorio Peano, and Hermann Schulz-Baldes; Topological edge states for disordered bosonic systems; J. Math. Phys. 59, 031901 (2018); arXiv:1708.08798.
  2. Christian Brendel, Vittorio Peano, Oskar Painter, and Florian Marquardt; Snowflake Topological Insulator for Sound Waves; Phys. Rev. B 97, 020102 (2018)arXiv:1701.06330.
  3. Christian Brendel, Vittorio Peano, Oskar Painter, and Florian Marquardt; Pseudomagnetic fields for sound at the nanoscale; Proc. Natl. Acad. Sci. U. S. A. 114, E3390 (2017); arXiv:1607.04321.
  4. Thomas Fösel, Vittorio Peano, and Florian Marquardt; L lines, C points and Chern numbers: understanding band structure topology using polarization fields; New J. Phys. 19, 115013 (2017); arXiv:1703.08191.
  5. Thales Figueiredo Roque, Vittorio Peano, Oleg M. Yevtushenko, and Florian Marquardt; Anderson Localization of Composite Excitations in Disordered Optomechanical Arrays; New J. Phys. 19, 013006 (2017); arXiv:1607.04159.
  6. Vittorio Peano, Martin Houde, Florian Marquardt, and Aashish A. Clerk; Topological quantum fluctuations and travelling wave amplifiers; Phys. Rev. X 6, 041026 (2016); arXiv:1604.04179.
  7. Vittorio Peano, Martin Houde, Christian Brendel, Florian Marquardt, and Aashish A. Clerk; Topological phase transitions and chiral inelastic transport induced by the squeezing of light; Nature Comm. 7, 10779 (2016); arXiv:1508.01383.
  8. M. Schmidt, S. Keßler, V. Peano, O. Painter, and F. Marquardt; Optomechanical creation of magnetic fields for photons on a lattice; Optica 2, 635 (2015); arXiv:1502.07646.
  9. V. Peano, H. G. L. Schwefel, Ch. Marquardt, and F. Marquardt; Optomechanical position detection enhanced by de-amplification using intracavity squeezing; Phys. Rev. Lett. 115, 243603 (2015); arXiv:1502.06423.
  10. M. Schmidt, V. Peano, and F. Marquardt; Optomechanical Dirac Physics; New J. Phys. 17, 023025 (2015); arXiv:1410.8483.
  11. V. Peano, C. Brendel, M. Schmidt, and F. Marquardt; Topological Phases of Sound and Light; Phys. Rev. X 5, 031011 (2015); arXiv:1409.5375.
  12. Vicente Leyton, Maryam Roghani, Vittorio Peano, and Michael Thorwart; Photon-assisted confinement-induced resonances for ultracold atoms; Phys. Rev. Lett. 112, 233201 (2014); arXiv:1403.0348.
  13. Michael Schmidt, Vittorio Peano, and Florian Marquardt; Optomechanical Metamaterials: Dirac polaritons, Gauge fields, and Instabilities; arXiv:1311.7095.
  14. Vittorio Peano, and M I Dykman; Quantum fluctuations in modulated nonlinear oscillators; New J. Phys. 16, 015011 (2014); arXiv:1307.3670.
  15. Lingzhen Guo, Vittorio Peano, M. Marthaler, and M. I. Dykman; Quantum critical temperature of a modulated oscillator; Phys. Rev. A 87, 7 (2013); arXiv:1212.2678.
  16. V. Leyton, V. Peano, and M. Thorwart; Quantum noise properties of multiphoton transitions in driven nonlinear resonators; New J. Phys. 14, 093024 (2012); arXiv:1205.6797.
  17. V. Peano, M. Marthaler, and M. I. Dykman; Sharp tunneling peaks in a parametric oscillator: quantum resonances missing in the rotating wave approximation; Phys. Rev. Lett. 109, 090401 (2012); arXiv:1203.4803.
  18. Stephan André, Lingzhen Guo, Vittorio Peano, Michael Marthaler, and Gerd Schön; Emission spectrum of the driven nonlinear oscillator; Phys. Rev. A 85, 053825 (2012); arXiv:1203.2491.
  19. V. Leyton, M. Thorwart, and V. Peano; Qubit state detection using the quantum Duffing oscillator; Phys. Rev. B 84, 134501 (2011); arXiv:1109.5562.
  20. M. I. Dykman, M. Marthaler, and V. Peano; Quantum heating of a parametrically modulated oscillator: spectral signatures; Phys. Rev. A 83, 052115 (2011); arXiv:1012.3339.
  21. V. Peano, and M. Thorwart; Quasienergy description of the driven Jaynes-Cummings model; Phys. Rev. B 82, 155129 (2010); arXiv:1007.5289.
  22. V. Peano, and M. Thorwart; Dynamical bistability in the driven circuit QED; Europhys. Lett. 89, 17008 (2010); arXiv:0903.2338.
  23. V. Peano, and M. Thorwart; Nonlinear response of a driven vibrating nanobeam in the quantum regime; New J. Phys. 8, 21 (2006); arXiv:cond-mat/0512130.
  24. V. Peano, M. Thorwart, C. Mora, and R. Egger; Confinement-induced resonances for a two-component ultracold atom gas in arbitrary quasi-one-dimensional traps; New J. Phys. 7, 192 (2005); arXiv:cond-mat/0506272.
  25. V. Peano, M. Thorwart, A. Kasper, and R. Egger; Nanoscale atomic waveguides with suspended carbon nanotubes; Appl. Phys. B 81, 1075-1080 (2005); arXiv:quant-ph/0505210.
  26. V. Peano, and M. Thorwart; Dynamics of the quantum Duffing oscillator in the driving induced bistable regime; Chem. Phys. 322, 135 (2006); arXiv:cond-mat/0505671.
  27. V. Peano, M. Thorwart, C. Mora, and R. Egger; Shape resonances for ultracold atom gases in carbon nanotube waveguides; arXiv:cond-mat/0411517.
  28. V. Peano, and M. Thorwart; Macroscopic quantum effects in a strongly driven nanomechanical resonator; Phys. Rev. B 70, 235401 (2004); arXiv:cond-mat/0407720.